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Three-dimensional self-avoiding convex polygons
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We calculate the generating function of three-dimensional self-avoiding convex polygons. This both adds to
the very short list of exactly solved three-dimensional statistical mechanics systems and illuminates the prop-
erties of self-avoiding polygons, the paradigm model of ring polymers.@S1063-651X~97!51206-2#

PACS number~s!: 64.60.Fr, 75.10.Hk, 61.41.1e, 05.50.1q
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INTRODUCTION

Three-dimensional~3D! models in statistical mechanic
have proved to be exceptionally difficult to analyze, w
only a very small number of solutions to nontrivial problem
known. These include staircase polygons@1#, directed ani-
mals@2#, Zamoldchikov’s model and itsN-component exten-
sion @3–5# and a 3D dimer model@6#. Among these models
staircase polygons are the least intrinsically three dim
sional, being generated by a concatenation argument, w
is essentially one dimensional. The solution of the 3D
rected animal problem is obtained by mapping it onto the
hard hexagon model, while Baxter’s work on the Zamo
chikov solution of the tetrahedron equations~which are a
genuinely 3D version of the star-triangle equations! also dis-
plays considerable two-dimensional character.

For self-avoiding walks and self-avoiding polygons@7#,
exact solutions have focused on simpler models@8,9#, such
as staircase, convex, row-convex and three-choice polyg
@10#. The aim of studying these simpler models is twofo
While they have intrinsic combinatorial interest, to physici
they appear to capture many of the important features
self-avoiding polygons, and they can be generalized to mo
collapse transitions@11# observed in vesicles and the like.

In this paper we obtain the perimeter generating funct
for three-dimensional self-avoiding convex polygo
~SACP’s!. This solution adds to the very short list of exact
solved 3D models. The model itself contains some of
physics of ring polymers in dilute solution. It also illum
nates the increase in functional complexity as one mo
from a 2D to a 3D system.

Our method of solution can, in principle, be generaliz
to higher-dimensional SACP’s, though at the cost of grea
increased algebraic complexity. The solution is long a
complex, and full details will be published elsewhere@12#. In
this paper we only describe the central ideas of the solut
and give an outline of its derivation.

We will study families of convex polygonswithout im-
posing the condition of self-avoidance.We then consider the
different types of self-intersection, and systematically
move these by an inclusion-exclusion argument. Procee
backwards from our final result, we find that convex po
gons~CP’s! can be expressed in terms of SACP’s, plus C
551063-651X/97/55~6!/6323~4!/$10.00
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with loops of one, two or three dimensions. These are s
tematically evaluated in terms of a new class of polygo
called unimodal polygons~UP’s!, and staircase polygons
whose generating function has been previously obtained@1#.
The UP’s are enumerated similarly, by eliminating loops
different types by use of the inclusion-exclusion principle

In what follows, we first carefully establish our notatio
then present our results by increasing generality: stairc
unimodal, and finally convex SAP’s.

I. DEFINITIONS

Let d>1, and let us consider the latticeZd, with its ca-
nonical basis (e1 , . . . ,ed). An oriented rooted polygon o
perimeter 2n is a ~not necessarily self-avoiding! walk of
2n steps on the lattice with coincident origin and end poi
Such a walk will be encoded by a wordu5u1u2•••u2n on
the alphabet$1,2, . . . ,d%ø$ 1̄ , 2̄, . . . ,d̄%, meaning that, if
ui5k ~ k̄ ), then one goes from thei th vertex to the next
vertex by taking a step along the unit vectorek (2ek). De-
noting the number of occurrences ofk in u as uuuk , rooted
polygons are thus equivalent to wordsu satisfying
uuuk5uuu k̄ for 1<k<d. The lengthuuu of a word u is its
number of letters. An oriented polygon is an oriented roo
polygon defined up to a cyclic permutation of its vertice
~All the polygons we consider are oriented; hence the w
‘‘oriented’’ will often be omitted.! A ~rooted or unrooted!
polygon is self-avoiding if no vertex~except the origin! is
revisited. A nonempty SAP~rooted SAP! will also be called
a loop ~rooted loop!.

We now define three important classes of polygons:
staircase, unimodal, and convex polygons.

A rooted polygon is a rootedstaircasepolygon if it fac-
tors as vw, where v (w) is a word on $1, . . . ,d%
($ 1̄ , . . . d̄%). This implies in particular thatuvu5uwu.

For k<d, a rooted polygon isunimodal in direction kif it
can be writtenvw ~where now bothv andw are words on

$1, . . . ,d%ø$ 1̄ , . . . ,d̄%), with uvu k̄5uwuk50. It is unimo-
dal if it is unimodal in all directions. A polygon is unimoda
if it can be represented by a unimodal rooted polygon~which
is unique when it exists!.

A polygon isconvex in direction kif it can be represented
R6323 © 1997 The American Physical Society
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by a rooted polygon that is unimodal in directionk. It is
convexif it is convex in all directions: for eachk, there exists
a rooted version of the polygon~usually depending onk) that
is unimodal in directionk ~for unimodal polygons, thesame
rooted polygon works for all directions!. Equivalently, its
perimeter is exactly twice the sum of the side lengths of
smallest bounding hyper-rectangle~its box!. A unimodal
polygon is naturally convex. More precisely, a unimod
polygon is a convex polygon that contains the vertex
minimal coordinates of its box. Similarly, a staircase po
gon is a unimodal polygon that contains the vertex of ma
mal coordinates of its box.

Let I,$1,2, . . . ,d%, and letl be a rooted loop of dimen
sion uI u on the alphabetIø Ī , with Ī 5$ k̄ :kPI %. Let u be a
~rooted or unrooted! polygon. If there exist two wordsv and
w such thatu5vl w, we say thatu has a loop in I. Our
method for counting convex SAP relies on the fact that
l 1 , . . . ,l i are i loops of a convex polygonu, then remov-
ing all the letters ofu occurring in thesei loops leaves an-
other polygon. This is only true because two loops of a c
vex polygon neveroverlap.

II. FIRST ENUMERATIVE RESULTS

In this subsection we first enumerate rootedunimodal
polygons onZd having no 1D loop.We then obtain the cor
responding result forconvexpolygons.

Let P be a set of~rooted or unrooted! polygons. The
multi-perimeter generating functionfor the elements ofP is

(
uPP

x1
uuu1•••xd

uuud ,

and theperimeter generating functionis

(
uPP

t uuu11•••1uuud5 (
uPP

t uuu/2.

We will have frequent occasion to perform a particu
operation on a Laurent series, so we define an operato
this purpose. ForI,$1, . . . ,d%, we define an operatorEI
that acts on Laurent series in the variablesx1 , . . . ,xd with
real coefficients. Its action can be described as retaining o
terms of even powers in the subscripted subsetI , which are
then replaced with their respective square roots. For
ample, letf (x1 ,x2)5(an,mx1

nx2
m . Then

E$1%( f ~x1 ,x2!…5( a2n,mx1
nx2

m.

If I is the the set of all indices$1, . . . ,d% we delete the
subscript I . We denote by f̄ (t) the series f (t, . . . ,t).
We define ĒI„f „x1 , . . . ,xd)… to be ḡ (t), where
g(x1 , . . . ,xd)5EI„f (x1 , . . . ,xd)….

We now give two lemmas, which illustrate two ingred
ents of our method: the classical inclusion-exclusion pr
ciple and the use of the operatorE. ~We prove the first
lemma. All subsequent proofs are omitted.!

Lemma I. The multiperimeter generating function fo
rooted unimodal polygons ofZd having no 1D loop is
s
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EF ~12x1!~12x2!•••~12xd!

12x12x22•••2xd
G .

Proof. In a rooted unimodal polygon, forkP$1, . . . ,d%,
all occurrences of the letterk precede all occurrences ofk̄ .
Hence, the rooted unimodal polygons~including the empty
polygon! are in one-to-one correspondence with the wo
u on the alphabet$1,2, . . . ,d% such thatuuuk is even for all
k<d. Thus their multiperimeter generating function
E@1/(12x12x22•••2xd)#. More generally, given a se
I,$1, . . . ,d%, the multiperimeter generating function fo
rooted unimodal polygons having a factork k̄ for all kPI is
SI5E@)kPIxk /(12x12x22•••2xd)#.

For k<d, a unimodal rooted polygon has at most o
occurrence ofk k̄. Hence the inclusion-exclusion principl
implies that the multiperimeter generating function for un
modal rooted polygons having no one-dimensional loop

(
I,$1, . . . ,d%

~21! uI uSI ,

which concludes the proof. By a similar, but more comp
cated argument we can prove the following result for conv
polygons:

Lemma II.Let d>2. The multiperimeter generating func
tion for convex polygons inZd that have no 1D loop and ar
of dimension exactlyd is

EF ~d21!!
x1x2•••xd~12x1!

2~12x2!
2•••~12xd!

2

~12x12x22•••2xd!
d G .

It follows that the number ofd-dimensional convex poly-
gons onZd of perimeter 2n having no 1D loop is asymptoti
cally equal to

~d21!2d

d3d
d2nnd21@11O~1/n!#.

This gives an asymptotic upper bound for the numbercn
(d) of

d-dimensional convex loops of perimeter 2n:

limsup
n→`

cn
~d!d3d

~d21!2dd2nnd21<1.

It is known that the number ofd-dimensional convex loops
is also asymptotic to (d21)2dd2nnd21/d3d @13#. In other
words,a random d-dimensional convex polygon of large p
rimeter having no1D loop is almost surely self-avoiding.

III. STAIRCASE POLYGONS

The multiperimeter generating functionZd for ~self-
avoiding! staircase polygons can@1# be expressed in terms o
squares of the multinomial coefficients:

Zd~x1 , . . . ,xd!5 (
~a1 , . . . ,ad!PNd

S a11•••1ad
a1 , . . . ,ad

D 2)
i51

d

xi
ai .

~1!
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As shown in@1#, the generating function for~oriented! stair-
case SAP onZd is then

Sd~x1 , . . . ,xd!512
1

Zd~x1 , . . . ,xd!
.

In two dimensions we have

Z2~x1 ,x2!5 (
~a1 ,a2!PN2

S a11a2
a1 ,a2

D 2x1a1x2a2
5

1

A122x122x222x1x21x1
21x2

2
. ~2!

We will also consider the seriesZ̄d(t)5Zd(t, . . . ,t),
which isD-finite. For instance, the seriesZ̄3(t) is character-
ized by Z̄3(0)51, Z̄38(0)53, and t(12t)(129t) Z̄39(t)

1(1220t127t2) Z̄38(t)23(123t) Z̄3(t)50. The smallest

singularity of Z̄3 is 1/9, and around this point,Z̄3(t)
5A1Bln(129t)@11o(1)#.

For a further study of the seriesZ̄d(t), including their
connections with lattice Green functions, Heun functions a
elliptic integrals, see@1,14,15#.

IV. UNIMODAL SELF-AVOIDING POLYGONS

Next we construct the multiperimeter generating funct
Ud(x1 , . . . ,xd) for oriented, unimodal SAP’s onZd. This
can be computed for arbitraryd by induction, but here we
give the results ford52 andd53 only.

As a unimodal polygon is represented by auniqueunimo-
dal rootedpolygon, we only need to handle rooted polygon
i.e., words. Our method is based on the following two obs
vations:~i! a loop l of a rooted unimodal polygonul v is
unimodal; ~ii ! if a rooted unimodal polygon has a loop
I,$1, . . . ,d% and a loop inJ, then IùJ5B. That is, the
two loops occupy orthogonal subspaces.

In two dimensions, ifu is a rooted UP having no 1D loop
it factorizes uniquely asvu8w, whereu8 is a 2D USAP and
vw is a staircase polygon. Combining Lemma I and Eq.~1!
gives

EF ~12x1!~12x2!

12x12x2
G5U2~x1 ,x2!Z2~x1 ,x2!.

Hence, using~2!,

U2~x1 ,x2!52
x1x2

A122x122x222x1x21x1
21x2

2
. ~3!
d

,
r-

This result was first obtained by Lin and Chang by a diffe
ent method@16#. See also@17# for a third proof.

In three dimensions, ifu is a rooted UP having no 1D
loop, we can have either a 2D loop in one of the thr
orthogonal planes, or a 3D loop~but not both!. In the
latter case we haveu5vu8w where u8 is a 3D loop and
vw is a staircase polygon. This gives a contributi
U3(x1 ,x2 ,x3)Z3(x1 ,x2 ,x3). In the former case, when th
loop is in the (x1 ,x2) plane, it can be proved that the corr
sponding generating function is

E$3%F 1

12x3
Z2S x1

~12x3!
2 ,

x2
~12x3!

2D GU2~x1 ,x2!.

Using Lemma I and the above results, the seriesZ3U3 can be
expressed as analgebraic function of x1, x2 andx3. In par-
ticular, theperimetergenerating functionŪ3 for 3D unimo-
dal SAP is given by

Z̄3~ t !Ū35
6t2

129t
2

3t2

A124t
$@~123u!~11u!#21/2

1@~113u!~12u!#21/2%, ~4!

with u5At. The logarithm in the asymptotic behavior o
Z̄3(t) shows that 1/Z̄3(t), and henceŪ3, is not D-finite.
However,Z̄3(t)Ū3 is algebraic of degree 8. More generall
one can prove thatŪd is a quotient ofD-finite series@12#.

V. SELF-AVOIDING CONVEX POLYGONS

To calculate the number of convex SAP’s we again co
pute a simpler generating function, and then correct it by
of the inclusion-exclusion principle.

In two dimensions, a convex polygonu having no 1D
loop is either self-avoiding, or else has two rooted unimo
loops linked by a staircase polygon. More precise
u5vu1wu2 whereu1 andu2 are unimodal andvw is a stair-
case polygon—or the symmetric case corresponding to a
flection of the entire structure. Using Lemma II and Eq.~1!,
this implies that the multiperimeter generating function f
oriented convex self-avoiding polygons of dimension 2 is

C2~x1 ,x2!5E[1,2]Fx1x2~12x1!
2~12x2!

2

~12x12x2!
2 G

22Z2~x1 ,x2!@U2~x1 ,x2!#
2,

that is
C2~x1 ,x2!5
2x1x2@123x123x213x1

213x2
215x1x22x1

32x2
32x1

2x22x1x2
22x1x2~x12x2!

2#

D2 2
8x1

2x2
2

D3/2
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where D5122x122x222x1x21x1
21x2

2 . This result was
first proved by Lin and Chang@16# ~see also@18# and @17#!.
The perimeter generating function was previously obtain
by Delest and Viennot@19#. Our proof provides a nice com
binatorial interpretation of each of the two parts of the e
pression ofC2(x1 ,x2): the rational part counts convex poly
gons having no 1D loop, and the algebraic part counts th
that are not self-avoiding~i.e., have two loops!.

In three dimensions, a convex polygon having
1D loop is either self-avoiding, or has two 3D loops sep
rated by a staircase polygon—giving rise to a te
4Z3(x1 ,x2 ,x3)@U3(x1 ,x2 ,x3)#

2, or has one, two or at mos
three 2D loops which can be unimodal or not. One is led
study separately seven classes of polygons, the most diffi
one being when there are three 2D orthogonal loops.

The seven cases are then combined to yield our m
result, which is that the perimeter generating function
oriented convex SAP’s of dimension 3 is, withu5At,

C̄3~ t !5
8t3~4251t1198t22135t3!

~129t !3
1

96t4~126t !

~129t !~124t !

2
24t4~12t !~8260t1145t22120t3116t4!

~124t !4

1
96t4

A124t
F ~12t !~122t !~227t14t2!

~124t !3

2
2~126t !

~129t !2
1

2t2

~11t !2~124t !G1
24ut4

124t

3F 12t22u

@~123u!~11u!#3/2
2

12t12u

@~113u!~12u!#3/2G
2

64t6~524t !

~11t !2~124t !3/2A128t

2
4

Z̄3~ t !
F 6t2

129t
2

3t2

A124t
$@~123u!~11u!#21/2

1@~113u!~12u!#21/2%G 2.
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CONCLUSIONS

As the function Z̄3(t)
21 is neither algebraic nor

D-finite, it follows thatC̄3 is neither algebraic norD-finite.
However,Z̄3(t)C̄3 isD-finite ~but not algebraic!. If we write
C̄35A(t)1B(t)/ Z̄3(t), whereA(t) andB(t) are algebraic
series, thenA(t) is algebraic of degree 16 andB(t) is alge-
braic of degree 8. This indicates that the order of the diff
ential equation satisfied byZ̄3(t)C̄3 must be large.

The singularities ofC̄3 are at t51/9, 1/8, 1/4, 1, and
21. The singularities at 1/8 and21 are unexpected, for the
are not singularities of the generating functionŪ3 for 3D
unimodal loops@see~4!#.

The expansion ofC̄3 provides the following asymptotic
form for the number of 3D oriented self-avoiding conve
polygons of perimeter 2n ~see@20#!:

2632n29n2H 11
c

n
1

c1
nlnn

1
c2

n~ lnn!2
1•••1

ck
n~ lnn!k

1oS 1

n~ lnn!kD J .
The generating function for oriented convex SAP’slying

in Z3 ~but possibly having a smaller dimension! is
C̄313C̄213C̄1 whereC̄15t is the generating function fo
1D convex loops.

The generating function for the number of 3Dnonori-
ented convex SAP’s isC̄3/2. The above expression fo
C̄3(t) can be readily expanded int, which allowed us to
confirm our result by comparing it with the known, unpu
lished data obtained previously by Enting and Guttmann
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