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Three-dimensional self-avoiding convex polygons
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We calculate the generating function of three-dimensional self-avoiding convex polygons. This both adds to
the very short list of exactly solved three-dimensional statistical mechanics systems and illuminates the prop-
erties of self-avoiding polygons, the paradigm model of ring polyn{&$063-651X97)51206-2

PACS numbe(s): 64.60.Fr, 75.10.Hk, 61.4%e, 05.50+q

INTRODUCTION with loops of one, two or three dimensions. These are sys-
tematically evaluated in terms of a new class of polygon,
Three-dimensiona(3D) models in statistical mechanics called unimodal polygonsUP’s), and staircase polygons,
have proved to be exceptionally difficult to analyze, with whose generating function has been previously obtdjiigd
only a very small number of solutions to nontrivial problems The UP’s are enumerated similarly, by eliminating loops of
known. These include staircase polygdn3, directed ani- different types by use o_f the inclusion-excl_usion princip_le.
mals[2], Zamoldchikov's model and its-component exten- In what follows, we first cqrefully gstabhsh our notation,
sion[3-5] and a 3D dimer moddb]. Among these models, thgn present our results by increasing generality: staircase,
staircase polygons are the least intrinsically three dimenunimodal, and finally convex SAP’s.
sional, being generated by a concatenation argument, which
is essenti_ally one dimensiongl. The solutic_)n qf the 3D di- | DEFINITIONS
rected animal problem is obtained by mapping it onto the 2D
hard hexagon model, while Baxter's work on the Zamold- Let d=1, and let us consider the latti&, with its ca-

chikov solution of the tetrahedron equatiotshich are a nonical basis €, ... ,e4). An oriented rooted polygon of
genuinely 3D version of the star-triangle equatjoalso dis- perimeter 2 is a (not necessarily self-avoidingwvalk of
plays considerable two-dimensional character. 2n steps on the lattice with coincident origin and end point.
For self-avoiding walks and self-avoiding polygofid, = Such a walk will be encoded by a word=u,u,- - -U,, on
exact solutions have focused on simpler mod8IS], such  he alphabet1,2, ... d}U{1,2, ...,d}, meaning that, if

as staircase, convex, row-convex and three-choice polygo
[10]. The aim of studying these simpler models is twofold
While they have intrinsic combinatorial interest, to physicists
they appear to capture many of the important features of
self-avoiding polygons, and they can be generalized to mod
collapse transitionfl1] observed in vesicles and the like.

rlfi=k (k), then one goes from thigh vertex to the next

“vertex by taking a step along the unit vectyr(—e,). De-

oting the number of occurrences lofin u as|ul,, rooted

olygons are thus equivalent to words satisfying

u|=|uli for 1<k=d. The length|u| of a wordu is its

In this paper we obtain the perimeter generating functior{|umber of Igtters. An orienteq polygon is.an orignted r(_)oted
polygon defined up to a cyclic permutation of its vertices.

for three-dimensional  self-avoiding convex polygons(A” the polygons we consider are oriented; hence the word
(SACP’9. This solution adds to the very short list of exactly “oriented” will often be omitted) A (rooted or unrooted

solved 3D models. The model itself contains some of the olygon is self-avoiding if no vertexexcept the origih is
physics of ring polymers in dilute solution. It also illumi- polyg 9 P 9

nates the increase in functional complexity as one movegev's'ted' A nonempty SARrooted SAR will also be called

from a 2D to a 3D system. i I?/:/)g (rrlg(\?\:egelf(i)r?f .three important classes of polygons: the
Our method of solution can, in principle, be generalized taircase. unimodal. and coFr)wex polygons polygons:

to higher-dimensional SACP’s, though at the cost of greatlyS A rootéd polygor; is a rootedtaircasepol.ygon if it fac-

increased algebraic complexity. The solution is long anqOrS as here (W) is a word on {1 d

complex, and full details will be published elsewhgt&]. In vw, W v W)l w 1.4

this paper we only describe the central ideas of the solutior{{1. - - - d}). This implies in particular thay|=|w|.
and give an outline of its derivation. Fork=d, a rooted polygon isinimodal in direction kf it

We will study families of convex polygonwithout im- ~ ¢an be writtervw (where now bothy andw are words on
posing the condition of self-avoidand&e then consider the {1,...d}U{1,...,d}), with |v|=|w|=0. It is unimo-
different types of self-intersection, and systematically re-dal if it is unimodal in all directions. A polygon is unimodal
move these by an inclusion-exclusion argument. Proceedinifj it can be represented by a unimodal rooted poly@ehich
backwards from our final result, we find that convex poly-is unique when it exisjs
gons(CP’s) can be expressed in terms of SACP’s, plus CP’s A polygon isconvex in direction kf it can be represented
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by a rooted polygon that is unimodal in directidm It is (1= %) (1—Xp) - (1—Xg)
convexf it is convex in all directions: for each, there exists
a rooted version of the polygdnsually depending ok) that

is unimodal in directiork (for unimodal polygons, theame Proof. In a rooted unimodal polygon, fdte {1, ... d}
rooted polygon works for all directionsEquivalently, its all occurrences of the lettée precede all occurrences &f.

perimeter is exactly twice the sum of the side lengths of itSHence the rooted unimodal polygofiscluding the empty

smallest bounding hyper-rectanglés boY. A unimodal polygon are in one-to-one correspondence with the words
polygon is naturally convex. More precisely, a unlmodalfu on the alphabef1,2, . . . d} such thatul, is even for al

polygon is a convex polygon that contains the vertex 0k<d Th hei ltineri ; f . .
minimal coordinates of its box. Similarly, a staircase poly-_ """ us their multiperimeter generating function Is
E[1/(1—Xx,—X,—---—Xg)]. More generally, given a set

gon is a unimodal polygon that contains the vertex of maxi- d/sd- : .
mal coordinates of its box Ic{1,...d}, the multiperimeter generating function for

Let1C{1,2,...d}, and let/ be a rooted loop of dimen- rooted unimodal polygons having a factok for all kel is
sion|l| on the alphabetU |, with | ={k:kel}. Letu be a S'ZE[Hk:'Xk/(l__Xl_XZ_ o Xd)]
(rooted or unrootedpolygon. If there exist two words and For k<d, a unimodal rooted polygon has at most one
w such thatu=v/w, we say thatu has a loop in | Our  occurrence ok k. Hence the inclusion-exclusion principle
method for counting convex SAP relies on the fact that, ifimplies that the multiperimeter generating function for uni-

1-X1—Xp— -+ —Xg

/1’ L !/i arei |Oops of a convex po|ygo[:|, then remov- modal rooted pOIygonS haVing no one-dimensional |00p is
ing all the letters ofu occurring in these loops leaves an-
other polygon. This is only true because two loops of a con- 2 (— 1)|'|S| '
vex polygon nevepverlap Ic{d, ... d}
Il. FIRST ENUMERATIVE RESULTS which concludes the proof. By a similar, but more compli-

cated argument we can prove the following result for convex
In this subsection we first enumerate rootedimodal polygons:
polygons onZ® having no 1D loopWe then obtain the cor- Lemma Il.Let d=2. The multiperimeter generating func-
responding result foconvexpolygons. tion for convex polygons i that have no 1D loop and are
Let P be a set of(rooted or unrootedpolygons. The of dimension exacthd is
multi-perimeter generating functicior the elements of° is
XXt Xg(1=X1)?(1=Xp) %+ (1= Xg)?

S byl B A (e
ueP
It follows that the number ofl-dimensional convex poly-
and theperimeter generating functiois gons onZ of perimeter 2 having no 1D loop is asymptoti-
cally equal to
[ulq+ - +|ulg— |ul/2
2, e 2 (d—1)%

—d?,c|—d2“nd*1[l+0(1/n)].
We will have frequent occasion to perform a particular
operation on a Laurent series, so we define an operator fqrh|s gives an asymptotic upper bound for the nunﬁi@rof

this purpose. Fot C{1,... d}, we define an operatd€,  {-dimensional convex loops of perimeten:2
that acts on Laurent series in the variabkgs . . . X4 with

real coefficients. Its action can be described as retaining only ICIRES

terms of even powers in the subscripted subsethich are limsup =T <1.
then replaced with their respective square roots. For ex- ne (A=1)Td%n

ample, letf(x1,X,) ==a, mX1X5 . Then
It is known that the number al-dimensional convex loops
is also asymptotic to d—1)29d?"n9~1/d [13]. In other
Eqny(f(Xq,%2))= > g mX1X5- words,a random d-dimensional convex polygon of large pe-
rimeter having nolD loop is almost surely self-avoiding.

If 1 is the the set of all indice§l, . .. d} we delete the

subscript|. We denote by f (t) the seriesf(t, ... ). lll. STAIRCASE POLYGONS
We define E (f(xy,...xg)) to be g(t), where The multiperimeter generating functiod, for (self-
9(X1, .- Xa) =Ej(f(Xq, .. Xq)). avoiding staircase polygons c4ft] be expressed in terms of

We now give two lemmas, which illustrate two ingredi- squares of the multinomial coefficients:
ents of our method: the classical inclusion-exclusion prin-
ciple and the use of the operat&. (We prove the first
lemma. All subsequent proofs are omitjed. Za(Xq, ... Xq) = >
Lemma I|. The multiperimeter generating function for (a, ....ag)eNd
rooted unimodal polygons ¢t having no 1D loop is @
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As shown in[1], the generating function fdioriented stair-
case SAP orfd is then

Sy(Xq, oo Xg)=1l—5———.
Zd(Xl, A ,Xd)
In two dimensions we have
a;tap)|? a; a,
Zxix)= 2| o o | XS
(al,az)e‘\.z 1,92
1

)

V1= 2% = 2X,— 2X1 X+ X5+ X3

We will also consider the seriez_d(t)zzd(t, oo,
which is D-finite. For instance, the serié_%(t) is character-
ized by 23(0) 1, 23(0) 3, and t(1—-t)(1- 9t)Z (1)
+(1— 20t+27t2)23(t) 3(1-3t)Z4(t)=0. The smallest

singularity of Z5 is 1/9, and around this p0|nt23(t)
=A+BIn(1-9t)[1+0(1)].

For a further study of the serie&4(t), including their

connections with lattice Green functions, Heun functions and

elliptic integrals, se¢1,14,18.

IV. UNIMODAL SELF-AVOIDING POLYGONS

THREE-DIMENSIONAL SELF-AVOIDING CONVEX POLYGONS
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This result was first obtained by Lin and Chang by a differ-
ent method 16]. See alsq17] for a third proof.

In three dimensions, ifi is a rooted UP having no 1D
loop, we can have either a 2D loop in one of the three
orthogonal planes, or a 3D loofbut not both. In the
latter case we have=vu’'w whereu’ is a 3D loop and
vw is a staircase polygon. This gives a contribution
Us(X1,X2,X3)Z3(X1,X2,X3). In the former case, when the
loop is in the &4,X,) plane, it can be proved that the corre-
sponding generating function is

£ 7 X1 2
Bl 2| (1—x3)%" (1—x3)

2”U2(X1,X2)-

Using Lemma | and the above results, the seZigd; can be
expressed as amlgebraicfunction of x4, X, andxs. In par-

ticular, theperimetergenerating functionJ_3 for 3D unimo-
dal SAP is given by

t2 3t2
1-9t J1-—4t

+[(1+3u)(1—-u)] Y3,

Z5(t)Us= ———{[(1-3u)(1+u)]~*?

4

with u=t. The logarithm in the asymptotic behavior of
Z3(t) shows that JZ3(t) and hencelU,, is not D-finite.

Ug(Xq, . .. Xg) for oriented, unimodal SAP’s ofid. This
can be computed for arbitrany by induction, but here we
give the results fod=2 andd=3 only.

As a unimodal polygon is represented byrdqueunimo-

dal rootedpolygon, we only need to handle rooted polygons,
i.e., words. Our method is based on the following two obser-

vations: (i) a loop/ of a rooted unimodal polygon/v is
unimodal; (ii) if a rooted unimodal polygon has a loop in
IC{1,...d} and a loop inJ, thenINJ=. That is, the
two loops occupy orthogonal subspaces.

In two dimensions, ifi is a rooted UP having no 1D loop,
it factorizes uniquely asu’w, whereu’ is a 2D USAP and
vWw is a staircase polygon. Combining Lemma | and &g.
gives

1 1
M U2(X1,X2)Z5(X1,X2).

one can prove thaJJd is a quotient ofD- f|n|te serieg 12].

V. SELF-AVOIDING CONVEX POLYGONS

To calculate the number of convex SAP’s we again com-
pute a simpler generating function, and then correct it by use
of the inclusion-exclusion principle.

In two dimensions, a convex polygam having no 1D
loop is either self-avoiding, or else has two rooted unimodal
loops linked by a staircase polygon. More precisely,
u=wvu,;wu, whereu,; andu, are unimodal andw is a stair-
case polygon—or the symmetric case corresponding to a re-
flection of the entire structure. Using Lemma Il and ED,
this implies that the multiperimeter generating function for
oriented convex self-avoiding polygons of dimension 2 is

1-X1—X5
. 1—x%1)%(1—x,)?
Hence, using?2), Co(X X)) =E X1Xa( 1 2
2( 1 2) [1,2] (1—X1—X2)2
XX _222(X1:X2)[U2(X1yx2)]21
Ua(X1.X5) =2 = )
? V1= 2% = 2X,— 2X1Xp+ X5 + X5 that is

Ay 2 2 P T T N N ERVRY
2X1Xo[ 1— 3X1 — 3Xp+ 3X7+ 3X5+ 5X 1 Xo — X7 — X5 — XTXo — X1 X5 — X1 Xo(X1— X2) ] 8x1x2
Ca(X1,X) = A2 T AR
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where A =1—2x;— 2X,— 2X,X,+ x5 +x5. This result was CONCLUSIONS
first proyed by Lin and .ChanbLG;l (see alsc[18_] and[l?]).. As the function Z_?,(t)‘1 is neither algebraic nor
The perimeter generating function was previously obtained. |~ . I hatCe | _ . -
by Delest and Vienndt19]. Our proof provides a nice com- D-finite, it follows thatC, is neither algebraic nab-finite.
binatorial interpretation of each of the two parts of the ex-However,Z3(t)Cj is D-finite (but not algebraik If we write
pression ofC,(X;,X,): the rational part counts convex poly- C3=A(t)+B(t)/Z5(t), whereA(t) and B(t) are algebraic
gons having no 1D loop, and the algebraic part counts thosgeries, therA(t) is algebraic of degree 16 ari(t) is alge-
that are not self-avoiding.e., have two loops braic of degree 8. This in%:ateithat the order of the differ-
In three dimensions, a convex polygon having noential equation satisfied by;(t)Cs must be large.
1D loop is either self-avoiding, or has two 3D loops sepa- The singularities ofC, are att=1/9, 1/8, 1/4, 1, and
rated by a staircase polygon—giving rise to a term-—1. The singularities at 1/8 and1 are unexpected, for they

2
4Z3(X1,%3,%3)[ Us(X1,X2,X3) %, Or has one, two or at most 4re not singularities of the generating functioky for 3D
three 2D loops which can be unimodal or not. One is led tq,nimodal loopgsee(4)].

study separately seven classes of polygons, the most difficult The expansion oC; provides the following asymptotic

one being when there are three 2D olrthogonall loops. form for the number of 3D oriented self-avoiding convex
The seven cases are then combined to yield our maifo|ygons of perimeter & (see[20)):

result, which is that the perimeter generating function for

oriented convex SAP’s of dimension 3 is, with= \t, o632n-902] 1 4 E+ i+ C2 - Ck
__ 8t¥4-51+1982-138°%) 96t} (1-6t) n - ninn - n(lnn) n(inn)
Colt)= (1-91)° (1—9t)(1—41) ! )
24t%(1—1t)(8— 60t+ 1452~ 1203+ 16t%) ndinn)/ J-
B (1—41)* The generating function for oriented convex SAR/®g
) in 73 (but possibly having a smaller dimensjoris
N 96t* [(1—t)(1—2t)(2—T7t+4t?) C4+3C,+3C,; whereC,=t is the generating function for
J1-atl (1—4t)3 1D convex loops. . .
The generating function for the number of 3inori-
B 2(1—6t)+ 2t % 24ut* ented convex SAP’s isC,/2. The above expression for
(1-9t)% " (1+t)%(1—4t)| 1-4t C,(t) can be readily expanded in which allowed us to

confirm our result by comparing it with the known, unpub-
lished data obtained previously by Enting and Guttmann.

1-t—2u 1—t+2u
- Bw @+ w2 [(1+3u)(1—u)]?
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